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An improved model-based wavefront sensorless adaptive optics algorithm is proposed for laser beam cleanup.
Deformable mirror (DM) eigenmodes are used to replace traditional Lukosz modes in order to avoid DM fitting
errors. The traditional method is based on a sophisticated calibration process and solving linear equations. In our
method, coefficients of DM eigenmodes are estimated by adding bidirectional modal biases into the system and
then solving parabolic equations. The calibration process is omitted in our method, which makes it more feasible.
From simulation and experimental results, the corrective accuracy of the improved method is higher than the
traditional one.
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High beam quality is required in most laser-related appli-
cations. Adaptive optics (AO) has been proven as an ef-
fective way to improve the beam quality[1]. In traditional
AO, a dedicated wavefront sensor is generally used to
measure the wavefront aberration and a conjugated
deformable mirror (DM) is driven to make compensation
accordingly. However, the performance of traditional AO
can be affected by non-common path error and scintilla-
tion. In recent years, wavefront sensorless AO (WSAO)
based on model-free algorithms like hill climbing, and ge-
netic and stochastic parallel gradient descent (SPGD), are
used to improve the beam quality[2–4]. However, the con-
vergence speed of model-free algorithms highly depends
on the control channel number and the achievement of
a global optimum is not always guaranteed. Model-based
WSAO provides a more efficient way to correct wavefront
aberrations[5–8]. In model-based WSAO, wavefront aberra-
tion is estimated from the deterministic relationship
between Zernike or Lukosz mode coefficients and a well-
chosen metric function. The convergence speed of model-
basedWSAO is much faster than model-freeWSAO. Only
two or three correction cycles are needed by model-based
WSAO, in contrast with several hundreds of iterations
typically needed by model-free algorithms.
Although it has been successfully demonstrated in prin-

ciple, model-based WSAO has drawbacks in practice. In
this Letter, a traditional model-based WSAO algorithm
is briefly reviewed first, then an improved algorithm is
proposed to enhance robustness and accuracy. The supe-
riority of our algorithm is demonstrated both by simula-
tion and experiment.
Phase aberration can be expressed by a linear combina-

tion of Lukosz modes[6],

φ ¼
XN
i¼4

aiLi ¼ a· L; (1)

where ai is the Lukosz mode coefficient, Li is the Lukosz
mode except piston and tip/tilt, and a and L are the
corresponding vectors.

Unlike Zernike modes, the orthogonality of Lukosz
modes is described as

Z
2π

0

Z
1

0
∇Lj · ∇Lj 0rdrdθ ¼ πδjj 0 ; (2)

where ∇ is the gradient operator and δjj 0 is the Kronecker
delta.

In the geometrical optics regime, the mean-square
radius of the far-field spot is proportional to an integral
over the pupil area as[7]

hρ2i ∝
ZZ

P
j∇φj2dA: (3)

From Eqs. (1) and (2), the integral can be rewritten as

ZZ
P
j∇φj2dA ¼ π

XN
i¼4

a2i : (4)

From Eqs. (3) and (4), the mean-square spot radius hρ2i
is dependent on the modulus square of the Lukosz
coefficients,

hρ2i ¼ μjaj2; (5)

where μ is a constant related to optical system parameters.
The metric function J with maximum value 1 is

defined as

J ¼
Z
ρ

Z
θ
I ðρ; θÞð1− ρ2∕R2Þρdρdθ ¼ 1−

μ

R2 jaj2; (6)

where I ðρ; θÞ is the normalized intensity distribution at
the focal-plane detector and R is the detector radius.
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In previous works, the coefficient vector a is estimated
by Eq. (7) based on the approximated linear relationship
between W and a[5,6],

â ≈ T−1ðW−W0Þ; (7)

W ¼
PNþ1

m¼1 bmJða− bmÞPNþ1
m¼1 Jða− bmÞ

;

where b is the coefficient vector of the Lukosz mode bias.
W0 is equal to W when the input error vector a ¼ 0. Ma-
trix T should be calibrated precisely before correction. The
elements of matrix T are calculated by Tik ¼ ∂Wi

∂ak

��
a¼0

,

which indicates that the initial input error should be
totally removed before calibration.
The model-based WSAO algorithm narrated above is

effective in principle but has some limitations in real
applications. First, analytical Lukosz modes can only be
approximately generated by a DM in practice. The DM
fitting errors will degrade the corrective accuracy espe-
cially for low-order AO systems. Simulation and experi-
mental results show that DM eigenmodes are preferable
to Lukosz modes since they can be reproduced perfectly
by the DM[9–11]. DM eigenmodes are derived from the
influence function matrix of the DM. The derivative of
the influence function matrix (∇ω) can be converted into
a multiplication of three matrices by singular value
decomposition (SVD):

∇ω ¼ ð∇UÞSVT: (8)

Matrix U is given as

U ¼ ωðSVTÞ−1: (9)

The columns of matrix U are called DM eigenmodes,
whose orthogonality is the same as Lukosz modes as
described in Eq. (2).
Another difficulty of using Eq. (7) is that the calibration

of matrix T must be done under an aberration-free optical
system, which can be difficult to achieve in practice.
Furthermore, the linear relationship between W and a
is broken when the aberration is too large or the detector
radius R is not properly defined[6].
We will still use the metric function defined by Eq. (6),

but the coefficient of each mode is obtained by solving a
parabolic equation set and the calibration process can be
avoided. For different magnitude aberrations, the mean
metric function value is calculated to show the parabolic
relationship between the modulus of the error vector and
metric function (Fig. 1). The simulated metric function
changing curve agrees well with the best-fitting parabola.
Here, a0 is the coefficient vector of the DM eigenmodes.
The initial metric function is assumed as J0. After add-

ing a positive modal bias þb0iEi to the optical system by
the DM, where b0i is the modal bias coefficient and Ei

is the corresponding DM eigenmode, the metric function

changes from J0 to Jþ. Similarly, we can get J− by intro-
ducing a negative modal bias −b0iEi . For each DM
eigenmode, a parabolic equation set like Eq. (10) can be
obtained. The system’s initial aberration is taken into
account in Eq. (10), so the calibration process in the tradi-
tional method can be avoided:

8>>>>><
>>>>>:

J0 ¼ 1− μ
R2

P
k≠i

a02k −
μ
R2 a02i ;

Jþ ¼ 1− μ
R2

P
k≠i

a02k −
μ
R2 ða0i þ b0iÞ2;

J− ¼ 1− μ
R2

P
k≠i

a02k −
μ
R2 ða0i − b0iÞ2:

ð10Þ

Each DM eigenmode coefficient can be solved from
Eq. (10) as

a0i ¼
b0iðJþ − J−Þ

2Jþ − 4J0 þ 2J−

: (11)

From Eq. (11), to estimate one certain mode coefficient, at
least three measurements of the metric function (i.e.,
taking three focal-plane images) are required. To estimate
the coefficients of N modes, 2N+1 measurements should
be taken. The estimated wavefront aberration is sub-
sequently corrected by the DM based on the phase
conjugation principle.

Simulations were made to compare the performance of
our method using Eq. (11) and the traditional method us-
ing Eq. (7). A 37-channel DMmodel with a Gaussian-type
influence function is simulated and the coupling coefficient
is set as 0.2. Wavefront aberrations were simulated by
applying random voltages to the DM. One hundred
error samples with certain root-mean-square (RMS) val-
ues were generated for correction. The mean wavefront
correction accuracy changing with the aberration’s
RMS value is shown in Fig. 2. Here, the correction accu-
racy is defined as

ε ¼ 1−
σres
σ0

; (12)

Fig. 1. Parabolic relationship between the input aberration and
the metric function.
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where σ0 is the RMS of the initial wavefront error and σres
is the RMS of the residual wavefront error. For initial
wavefront errors with an RMS of 5 rad, closed-loop correc-
tion results of the two methods are presented in Fig. 3.
Although both are approaching convergence within three
iterations, the residual error of our method is much smaller
than the traditional one.
The experimental system layout is illustrated in Fig. 4.

The light source is a 635 nm laser coupled with a single-
mode fiber. The DM used for both generating and
correcting aberrations is a 37-channel micromachined
membrane DM from OKO. The influence functions of the
DMweremeasured byaHartmann–Shack (H-S)wavefront
sensor (HASO3 76-GE from Imagine Optics Corporation).
TheDMeigenmodes were derived from themeasured influ-
ence function matrix using Eqs. (8)–(9). Then, each DM
eigenmode was generated by the DM in sequence and mea-
sured by an H-S simultaneously. The fitting error for each
mode can be characterized by the RMS difference between
the derived modes and the DM-generated modes. The first
10 DM eigenmodes and corresponding fitting errors are
shown in Fig. 5. For comparison, the first 10 Lukosz modes

are also generated by the DM and the fitting errors are
given in Fig. 6. Apparently, the fitting error of the DM
eigenmodes is negligible and significantly less than that
of the Lukosz modes.

An initial distorted focal spot is illustrated in Fig. 7(a).
The corrected image using Lukosz modes and Eq. (7) is
shown in Fig. 7(b). The corrected image using the DM ei-
genmodes and Eq. (11) is shown in Fig. 7(c). For both ap-
proaches, the first 10 modes as illustrated in Figs. 5 and 6
are used for the correction. Three cycles of correction are
performed to ensure the convergence of each method.
The initial wavefront aberration and residual wavefront
errors were both measured by an H-S sensor; the wave-
front RMS value corresponding to each spot is also given
in Fig. 7.

In conclusion, we demonstrate an improved model-
based WSAO by simulation and experiment. Using DM
eigenmodes and solving the parabolic equations directly,
the improved method is more feasible and the corrective

Fig. 2. Mean correction accuracy varied with the wavefront
error RMS.

Fig. 3. Residual wavefront error varied with the iteration
number.

Fig. 4. Experimental system layout.

Fig. 5. First 10 DM eigenmodes and the corresponding fitting
errors.

Fig. 6. First 10 Lukosz modes and the corresponding fitting
errors.
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accuracy is also higher than the traditional one. More ex-
periments should be done for continuous or pulsed solid-
state lasers to verify the performance of this algorithm in
the future.
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Fig. 7. (a) Initial spot, RMS ¼ 0.34λ; (b) the corrected spot
using the traditional method, RMS ¼ 0.084λ; (c) the corrected
spot using the improved method, RMS ¼ 0.041λ.
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